Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector

Identifieur interne : 00BF02 ( Main/Repository ); précédent : 00BF01; suivant : 00BF03

Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector

Auteurs : RBID : Pascal:03-0405006

Descripteurs français

English descriptors

Abstract

In this article the effect of rapid thermal annealing (RTA) on a 30 stacked InAs/GaAs, molecular beam epitaxially grown quantum dot infrared photodetector (QDIP) device is studied. Temperatures in the range of 600-800°C for 60 s, typical of atomic interdiffusion methods are used. After rapid thermal annealing the devices exhibited large dark currents and no photoresponse could be measured. Double crystal x-ray diffraction and cross sectional transmission electron microscopy studies indicate that this could be the result of strain relaxation. V-shaped dislocations which extended across many quantum dot (QD) layers formed in the RTA samples. Smaller defect centers were observed throughout the as-grown sample and are also likely a strain relaxation mechanism. This supports the idea that strained structures containing dislocations are more likely to relax via the formation of dislocations and/or the propagation of existing dislocations, instead of creating atomic interdiffusion during RTA. Photoluminescence (PL) studies also found that Si related complexes developed in the Si doped GaAs contact layers with RTA. The PL from these Si related complexes overlaps and dominates the PL from our QD ground state. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0405006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector</title>
<author>
<name sortKey="Stewart, K" uniqKey="Stewart K">K. Stewart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200</wicri:regionArea>
<wicri:noRegion>Canberra ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buda, M" uniqKey="Buda M">M. Buda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200</wicri:regionArea>
<wicri:noRegion>Canberra ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wong Leung, J" uniqKey="Wong Leung J">J. Wong Leung</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200</wicri:regionArea>
<wicri:noRegion>Canberra ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fu, L" uniqKey="Fu L">L. Fu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200</wicri:regionArea>
<wicri:noRegion>Canberra ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jagadish, C" uniqKey="Jagadish C">C. Jagadish</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200</wicri:regionArea>
<wicri:noRegion>Canberra ACT 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stiff Roberts, A" uniqKey="Stiff Roberts A">A. Stiff Roberts</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bhattacharya, P" uniqKey="Bhattacharya P">P. Bhattacharya</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Michigan</region>
</placeName>
<wicri:cityArea>Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0405006</idno>
<date when="2003-10-15">2003-10-15</date>
<idno type="stanalyst">PASCAL 03-0405006 AIP</idno>
<idno type="RBID">Pascal:03-0405006</idno>
<idno type="wicri:Area/Main/Corpus">00C954</idno>
<idno type="wicri:Area/Main/Repository">00BF02</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dark conductivity</term>
<term>Dislocation motion</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Infrared detectors</term>
<term>Internal stresses</term>
<term>Photodetectors</term>
<term>Photoluminescence</term>
<term>Rapid thermal annealing</term>
<term>Semiconductor quantum dots</term>
<term>Stress relaxation</term>
<term>Transmission electron microscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8560G</term>
<term>6865H</term>
<term>7867H</term>
<term>6172C</term>
<term>6837L</term>
<term>6172F</term>
<term>6172L</term>
<term>7855C</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Recuit thermique rapide</term>
<term>Détecteur IR</term>
<term>Photodétecteur</term>
<term>Conductivité obscurité</term>
<term>Diffraction RX</term>
<term>Microscopie électronique transmission</term>
<term>Contrainte interne</term>
<term>Relaxation contrainte</term>
<term>Mouvement dislocation</term>
<term>Photoluminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this article the effect of rapid thermal annealing (RTA) on a 30 stacked InAs/GaAs, molecular beam epitaxially grown quantum dot infrared photodetector (QDIP) device is studied. Temperatures in the range of 600-800°C for 60 s, typical of atomic interdiffusion methods are used. After rapid thermal annealing the devices exhibited large dark currents and no photoresponse could be measured. Double crystal x-ray diffraction and cross sectional transmission electron microscopy studies indicate that this could be the result of strain relaxation. V-shaped dislocations which extended across many quantum dot (QD) layers formed in the RTA samples. Smaller defect centers were observed throughout the as-grown sample and are also likely a strain relaxation mechanism. This supports the idea that strained structures containing dislocations are more likely to relax via the formation of dislocations and/or the propagation of existing dislocations, instead of creating atomic interdiffusion during RTA. Photoluminescence (PL) studies also found that Si related complexes developed in the Si doped GaAs contact layers with RTA. The PL from these Si related complexes overlaps and dominates the PL from our QD ground state. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STEWART (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BUDA (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WONG LEUNG (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FU (L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JAGADISH (C.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STIFF ROBERTS (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BHATTACHARYA (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic Materials Engineering, The Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>5283-5289</s1>
</fA20>
<fA21>
<s1>2003-10-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0405006</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this article the effect of rapid thermal annealing (RTA) on a 30 stacked InAs/GaAs, molecular beam epitaxially grown quantum dot infrared photodetector (QDIP) device is studied. Temperatures in the range of 600-800°C for 60 s, typical of atomic interdiffusion methods are used. After rapid thermal annealing the devices exhibited large dark currents and no photoresponse could be measured. Double crystal x-ray diffraction and cross sectional transmission electron microscopy studies indicate that this could be the result of strain relaxation. V-shaped dislocations which extended across many quantum dot (QD) layers formed in the RTA samples. Smaller defect centers were observed throughout the as-grown sample and are also likely a strain relaxation mechanism. This supports the idea that strained structures containing dislocations are more likely to relax via the formation of dislocations and/or the propagation of existing dislocations, instead of creating atomic interdiffusion during RTA. Photoluminescence (PL) studies also found that Si related complexes developed in the Si doped GaAs contact layers with RTA. The PL from these Si related complexes overlaps and dominates the PL from our QD ground state. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A72C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B60A16B</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B60A72F</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B60A72L</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8560G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>6865H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6172C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>6837L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>6172F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>6172L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Recuit thermique rapide</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Rapid thermal annealing</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Détecteur IR</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Infrared detectors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Photodétecteur</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Photodetectors</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Conductivité obscurité</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Dark conductivity</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Diffraction RX</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>XRD</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Contrainte interne</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Internal stresses</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Relaxation contrainte</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Stress relaxation</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Mouvement dislocation</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Dislocation motion</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fN21>
<s1>279</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0339M000339</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00BF02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00BF02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0405006
   |texte=   Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024